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Abstract-In this paper, we show analytically how to optimize the spacing between heat generating boards 
in a stack cooled by single-phase laminar forced convection. The thickness of each board is not negligible. 
The theoretical results for optimal spacing and maximum overall thermal conductance between stack and 
coolant are validated by means of numerical simulations of the complete flow and temperature fields. 
Results are reported for three different situations, which are dictated by the way in which the stack is 
attached to the rest of the cooling network of the electronics package : (1) fixed pressure drop, (2) fixed 

mass flowrate, and (3) fixed pumping power. 

1. INTRODUCTION 

To DETERMINE the optimal spacing of parallel heat 
generating plates in a stack of finite extent is a 
fundamental problem in the design of finned heat 
exchanger surfaces and packages of electronics. In 
both cases, the problem is analogous to determining 
the geometry in which the heat transfer rate extracted 
from the entire stack is maximum. 

Recent reviews [l, 21 show that this problem has 
received considerable coverage in the electronics 
cooling literature ; however, the published work refers 
to cooling by natural convection. For example, Bejan 
[3] and Bar-Cohen and Rohsenow [4] showed that the 
optimal spacing corresponds to a channel flow of the 
entrance type, in which the thermal boundary layers 
just touch at the downstream end of the channel. This 
problem was considered earlier by Elenbaas [5] and 
Levy [6]. More recently, the natural convection prob- 
lem was solved in more general terms numerically by 
Kim et al. [7] and Anand et al. [S, 91, who considered 
the interaction between adjacent channels and the 
effect of asymmetry between the thermal boundary 
conditions specified on the two sides of one channel. 

Although considerable work has been devoted also 
to channels cooled by forced convection (see, for 
example, refs. [l-3, 10 and 1 l]), the optimal spacing 
had not been recognized as an opportunity for max- 
imizing the heat transfer, because in these studies the 
coolant flowrate was fixed. Recent work on micro- 
channel integrated heat sinks [12, 131 showed that 
when the imposed pressure difference across the chan- 
nels is fixed, there exists an optimal fin-to-fin spacing 
for maximum total heat transfer rate. Bejan and 
Sciubba [14] showed that a similar optimum occurs 
in the design of a stack of smooth and negligibly thin 
heat generating boards. 

The first objective of this paper is to develop opti- 
mal spacing results for stacks that reproduce more 
closely the features encountered in actual electronic 
packages. For example, the finite thickness of each 
board is taken into account in the calculation of the 
optimal board-to-board spacing and maximum heat 
transfer rate from the stack. Results are developed for 
three flow configurations (stacks with fixed pressure 
drop, fixed flowrate, or fixed pumping power), 
depending on how the stack is attached to the coolant 
network of the package of electronics. The second 
objective is to validate these optimal results based 
on complete simulations of the flow and temperature 
fields in the vicinity of each board. 

2. OPTIMAL GEOMETRY OF PACKAGES 

WITH FIXED PRESSURE DROP 

We begin with.a generalization of the analysis of 
ref. [ 141, by including this time the effect of the board 
thickness t (Fig. 1). This effect was neglected in ref. 
[14], where it was assumed that t is always much 
smaller than D. This generalization of the analysis 
serves the additional purpose of redefining the ter- 
minology and basis for the existence of an optimal 
stacking of the boards in a given space (thickness H, 

and length L). If we assume that the number of boards 
in the stack is large, that number is 

(a) In the limit of sufficiently narrow channels 
(D/L + 0), the mean velocity through each channel is 
the same as in Poiseuille flow 
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NOMENCLATURE 

B, dimensionless conductance for constant 
pressure drop, equation (25) 

B, ,peLlr B, value corresponding to D = DOpt 

B1 dimensionless conductance for constant 
flowrate, equation (34) 

B3 dimensionless conductance for constant 
pumping power, equation (48) 

B3.p& B, value corresponding to D = D,,, 

c 
’ 

specific heat at constant pressure 
[kJ (kg-K)- ‘1 

C,, C2 constants 
D board-to-board spacing [ml, Fig. 1 

D, critical spacing [m], equation (33) 
H overall thickness of stack [ml, Fig. 1 

t board thickness [ml, Fig. 1 
T temperature [K] 

T, surface temperature [K] 

TX inlet temperature [K] 
u. w dimensionless velocity components, 

equation (17) 
U, W velocity components [m s- ‘1, Fig. 2 
u mean channel velocity [m s- ‘1, 

equation (2) 
U, free stream channel velocity [m s- ‘1 
U,, inlet velocity [m s- ‘1, Fig. 2 
x, z dimensionless coordinates, equation (17) 
A’, Z coordinates [ml, Fig. 2. 

k 
L 

Ld 
L 
rfl’ 
A4 

n 

P 
P 
P 
AP 

thermal conductivity [w (m * K) 
length of board [ml, Fig. 1 
downstream length [ml, Fig. 2 
upstream length [ml, Fig. 2 
mass flowrate [kg (s - m) ‘1 
dimensionless flowrate, equation 
number of boards in the stack 
dimensionless pressure, equation 
pressure [N m- ‘1 
pumping power [W rn-~ ‘1 
pressure difference [N m- ‘1 

-I 
1 Greek 

(36) K 

(18) 

fD 

symbols 
thermal diffusivity [m’ s- ‘1 
dimensionless temperature, equation (18) 
viscosity [kg (s * m) ‘1 
kinematic viscosity [m’ s- ‘1 

dimensionless pressure difference, 
equation (9) 
density [kg m- ‘1 
dimensionless pumping power, 
equation (47). 

Pr Prandtl number, v/a 
Re Reynolds number, equation (19) 

4’ total heat transfer rate [W mm ‘1 

Y: heat transfer rate from one surface 
w mm ‘1, equation (6) 

Subscripts 
( ), Poiseuille flow limit 
( )b boundary layer flow limit 

q” heat flux [W m- ‘1 

/- 
insulated 

. 

coolant 

AP, Tee 
- 
m 

-LA 
FIG. 1. Two-dimensional space filled with a stack of heat generating boards cooled by forced convection. 
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D2 AP 
rJ-- 

12/l L (2) 

where AP is the pressure difference maintained across 
the stack. We are assuming that the surfaces are 
smooth, and the contraction and enlargement effects 
are negligible. The mass flowrate per unit length 
normal to the stack profile H x L is ti’ = pUDn, 

which means that 

.I 
pHD2 BP 

m = 12p(l+t/D) L (3) 

In the same limit, the outlet temperature of the coolant 
matches the temperature of the trailing edge of the 
board. We assume for simplicity that the board 
surface is isothermal at T,, which means that the 
total rate of heat transfer removed from the stack 
is qi = ti’cp(Tw- T,), where T, is the coolant inlet 
temperature. By using equation (3), we conclude that 

pHD2 AP 

” = 12P(l +t/D) L -ccp(Tw- Tm). (4) 

It is important to note that in the scale analysis 
presented in this section, the assumption that the 
board is isothermal at T, means that we regard T, as 
the scale of the surface temperature, i.e. a scale that 
is distinct from (and greater than) the coolant initial 
temperature T,. This assumption is not meant to 
imply in any way that the board substrate is a perfect 
thermal conductor. On the contrary, in the numerical 
simulation of the complete flow and temperature fields 
(Sections 3-6) we modelled the board surfaces as sur- 
faces with uniform heat flux, which is a very good 
model for boards carrying flush mounted electronics. 

It is worth noting also that in the earlier study of 
the stack with boards with negligible thickness [14], 
the type of scale analysis shown in this section was 

performed in two ways. In the first version, the board 
surface temperature was assumed uniform, while in 
the second the board surface was modelled as uniform 
flux. The order of magnitude results (e.g. optimal 
board to board spacing) produced by the two analyses 
were identical. This means that in the present scale 
analysis the board temperature T, assumed above, 
equation (4), plays the same role as the L-averaged 
surface temperature when the board surface is 
modelled as uniform flux. This point will be tested 
numerically in Section 4, and discussed under equa- 
tion (27). 

(b) In the opposite limit, the board to board spacing 
D becomes large enough so that each surface is lined 
by a distinct laminar boundary layer. The fluid vel- 
ocity through the channel, U,, is obtained by com- 
bining the longitudinal force balance AP* D = 2Lz, 
with the Blasius solution for the L-averaged skin fric- 
tion, ?w = 0.664pU~(U,L/~)-‘/~. The result is 

APD 213 
u, = 

> 1.328pL”2v”z ’ 

According to the Pohlhausen solution for the same 
boundary layer flow, the heat transfer rate released 

by one surface is 

l/2 

(6) 

This means that the entire stack releases qk = 2nq’,, in 
other words 

(7) 

The two asymptotes of the q’(D) function, equa- 
tions (4) and (7), show that q’ increases roughly as D2 

when D is small, and decreases as D- 2’3 when D is 
large. There is a q’ maximum at an intermediate chan- 
nel spacing, D,,, : the order of magnitude of this opti- 
mal spacing is the same as the D obtained by inter- 
secting the asymptotes, q: E qb. The result is 

D opt g 2.73nm 114 
L (8) 

where TI is the dimensionless number associated with 
the imposed pressure difference [ 14, 151, 

“=!E 
w . (9) 

The corresponding maximum heat transfer rate 
released from the H-thick package is obtained by sub- 
stituting D E D,,, in equation (4) or equation (7) 

qbax 6 0.62 

If the analysis of equations (I)-(10) is repeated for 
a stack in which each board has one surface heated 
(TJ and the other insulated, the corresponding results 
for optimal spacing and maximum total heat transfer 

rate are 

D Upt r 2,lOn- 114 

L (11) 

q&x 6 0.37 

The inequality sign used in equations (10) and (12) is 
a reminder that the maximum of the actual q’(D) 

curve is located under the point of intersection of the 
qi and q6 asymptotes. The order of magnitude of the 
maximum q’ value is represented well by the right- 
hand side of equation (lo), or equation (12). 

A new result shown by equations (8) and (11) is 
that the board thickness t has no effect on the optimal 
channel spacing. The latter depends on the imposed 
pressure difference, the flow length L, and the coolant 
properties. Another new result is that a non-negligible 
board thickness will have an effect on the maximum 
heat transfer rate. Equations (10) and (12) show that 
q& decreases when t increases and becomes com- 
parable with the board-to-board spacing. These theor- 
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etical predictions will be validated by the numerical 
experiments described in Section 4. 

3. MATHEMATICAL FORMULATION AND 

NUMERICAL METHOD 

The effect of the board-to-board spacing on the 
total heat transfer rate q’ (or the rate of heat gen- 
eration in the Hx L space) was studied numerically. 
The flow and heat transfer were simulated in an 
elementary control volume that contains only one 
board (Fig. 2). The control volume has a thickness 
D + t, and a total length L, + L + L,, where L, and Ld 
are the lengths of the computational domain situated 
upstream and, respectively, downstream of the board. 
The chosen ratios L,/L and L,/L are large enough 
(namely, LJL = 0.6, L,/L = 1, for this entire study) 
so that the flow field around the board is not sensitive 
to further increases in their values. The inlet velocity 
Ii, and temperature T;, are assumed uniform in the 
plane X = 0. 

It is assumed that the boards are sufficiently wide 
in the direction perpendicular to the plane of Fig. 2 
such that the flow is essentially two-dimensional in 
the X-Z plane. The nondimensional equations that 
govern the conservation of mass, momentum and 
energy in the fluid portions of the control volume are 

(13) 

where V* = d2/dx”+ii’/&2, and the nondimensional 
variables are indicated by lower case letters 

(19) 

The board surfaces are smooth, impermeable, and 
with no slip (pi = w = 0). The upper surface releases 
the uniform heat Aux q” 

a0 L 
z= 

-1, at -L <x<~+l and .z=fi2 
L L 

(20) 

while the remaining three surfaces are adiabatic. The 
boundary conditions on the outer perimeter of the 
control volume are 

zf= 1, w=@=O, at x=0 (21) 

k(n, w,8) = 0 at x = (L,+L+L,)/L (22) 

w=O at z=+(D+t)/ZL (23) 

(u, @I, = +(D+o:2L = G4 e?= -to+r)/2L~ (24) 

The boundary conditions (23) reflect the assumption 
that the Reynolds number Re is small enough so that 
the flow is laminar and symmetric about the board 

FIG. 2. The computational domain, thermal boundary conditions on the board surfaces, and the non- 
uniform grid used for the case Re = IOW, D/L = 0.1, t/L = 0.02, LJL = 0.6 and &IL = 1. 
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midplane. It is worth noting that if this study were to 
be extended to boards covered with protruding heat 
sources (blocks), recirculation may occur between the 
plates, and the flow symmetry condition (23) is no 
longer appropriate. In such cases, the w condition (23) 
must be replaced by a w continuity condition of type 

(24). 
Note further that the repeated boundary condition 

(24) means that the numerical simulation based on 
Fig. 2 refers to one of the internal boards of the 
stack shown in Fig. 1. The top and bottom channels 
sketched in Fig. 1 differ from the half-channels of Fig. 
2 only with respect to one flow boundary condition. 
In Fig. 1, the top and bottom planes (the plates that 
confine the stack) are adiabatic, impermeable and no 
slip. In Fig. 2, the plane of symmetry z = (D+ t)/2L is 
adiabatic, impermeable and zero-shear. In the design 
optimization work that follows, it is assumed that the 
total number of boards n is of the order of 10 or 
greater, so that the overall performance of the stack 
of Fig. 1 is essentially the same as that of a stack of n 
control volumes of the type shown in Fig. 2. 

The forced convection heat transfer problem stated 
in equations (13)-(24) was solved for u(x, z), w(x, z) 
and 0(x, z) using the commercial finite-element pack- 
age FIDAP [16]. The first objective of these cal- 
culations was to determine the point of the board 
surface with the highest temperature, i”,,,,,, or dimen- 
sionless, Q,,, = (r,,,,, - T,)/(q”L/k). The overall ther- 
mal conductance of the package, q’/( T,,,,, - T,), was 
then minimized while varying the geometric param- 
eters of the H x L package of heat generating boards. 
The optimization procedure and its results are 
described in Sections 46. 

Special care was taken to select a nonuniform grid 
that is fine enough so that the calculated values of the 
maximum surface temperature (&,,,) and the end- 
to-end pressure drop (Ap = p(O) -p&/L+ 1 f&/L), 
where p represents an average in the z direction) are 
sufficiently insensitive to further grid refinements. The 
grid selected for the case Re = 1000, D/L = 0.1, 
t/L = 0.02, L,/L = 0.6, and L,/L = 1, is illustrated in 
the lower half of Fig. 2. This grid, which has a total 
of 671 elements, was chosen based on accuracy tests 
of the type illustrated here in Table 1. The elements 
employed in the simulation were isoparametric, 9- 
nodes quadrilateral, with linear pressure approxi- 
mation. 

Table 1. Accuracy test: the effect of grid 
fineness on the numerical solution for maxi- 
mum temperature and overall pressure drop 
(Re = 1000, D/L = 0.1, t/L = 0.02, L,/L = 

0.6, L,/L = 1) 

Elements Nodes 0,,, AP 

119 514 0.94 1.86 
214 1242 0.94 1.84 
424 1872 0.93 1.83 
671 2918 0.93 1.80 

1096 4676 0.93 1.80 

4. THE OVERALL THERMAL CONDUCTANCE 

OFTHE PACKAGE 

The total rate of heat generation due to n boards 
in the H x L stack of Fig. 2 is q’ = nq”L. The objective 
is to maximize q’ while keeping T,,,,, below a certain 
(safe) level, or to maximize the overall thermal con- 
ductance defined as the ratio q’/( T,,,,, - T,). It is con- 
venient to nondimensionalize the overall conductance 
by using the qkax scale derived in equations (10) and 

(12) 

B, = d/(Trnax- z-co) 
Hcp(pAP/Pr)“*’ (25) 

This definition can be rewritten using the B,,, and II 
definitions, equations (18) and (9) 

B, = [(;+$3m,,Wz]’ (26) 

to show that the objective function B, depends on 
the imposed pressure difference (II), channel spacing 
(D/L), and, through 0,,, on two additional param- 
eters (t/L, Pr). 

Figures 3(a)-(c) show that the overall thermal con- 
ductance B, is maximum when the board-to-board 
spacing reaches an optimal value. All the information 
plotted in Fig. 3 (and, later, in Figs. 4 and 5) was 
obtained numerically. The actual numerical data are 
indicated by larger symbols, while the curves have 
been added to visualize the trend of each group of 
data. The three frames of Fig. 3 were drawn for differ- 
ent values of the pressure drop number II, namely, 
9x lo’, 1.5x 106and2.1 x 106. Ifinthereferencecase 
considered in Table 1 the fluid is air, these II values 
correspond to the Revalues 500,750 and, respectively, 
1000. The use of the (D/L)ll”* group on the abscissa 
was suggested by equation (11) : the numerical results 
presented in Fig. 3 validate equations (8) and (11) 
and, in particular, the prediction that the board thick- 
ness (t/L) does not influence the optimal board-to- 
board spacing. The best fit for the nine D,,, cases 
documented in Figs. 3(a)-(c) is 

(27) 

Although in an order of magnitude sense equations 
(8), (11) and (27) are essentially the same, it is worth 
noting that the analytical formula derived for the 
model with both surfaces isothermal, equation (8), 
yields almost the same values for D,,, as the cor- 

relation of the present numerical results, equation 

(27). 
The peak value of the overall thermal conductance, 

B I,peak, depends on the board thickness t/L and the 
pressure drop number II. The numerical results of 
Fig. 3 can be correlated by noting that equation (12) 
can be rewritten in view of equation (25) 
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n = 2.1 x 106 

FIG. 3. The maximization of the overall thermal conductance 
at fixed pressure difference : the effect of the board thickness 

(Pr = 0.7). 

in which C, = 2.8 is the constant found in the cor- 
relation of equation (27). The numerical B,.peak data of 
Fig. 3 are correlated within 5% by a similar expression 

B,.peak = 
0.18 

(29) 

This correlation proves the validity of the scaling law 

and the direction of the inequality sign that appear in 
equation (12). 

5. OPTIMAL GEOMETRY OF PACKAGES 

WITH FIXED MASS FLOWRATE 

The optimal board-to-board spacings determined 
in Sections 2 and 4 refer to a package with prescribed 
pressure difference, AP. The fixed-AP assumption is 
a good model for installations in which several parallel 
packages and other components (e.g. channels) 
receive their coolant from the same plenum. The ple- 
num pressure is maintained by a fan or, in the case of 
a liquid coolant, by a pump. The fan or pump may be 
located upstream or downstream of the packages that 
are being cooled by forced convection. 

The constant-AP model is not appropriate in a flow 
arrangement in which the H-thick package of interest 

is placed in series with other components (flow pass- 
ages) that have a considerably larger flow resistance 
than the package itself. In such an application, the 
pressure difference that is maintained by the fan or 
pump is spent mainly on the components with the 
dominant flow resistance. From the point of view of 
the H-thick package that must be optimized, the effect 
of the more resistive portion of the flow circuit is to 

fix the mass flowrate through the package. In this 
section, we extend the geometric optimization method 
of Section 2 to a package with prescribed mass flow- 
rate +I’. 

(a) The limit D/L -+ 0 is characterized by an outlet 
coolant temperature that approaches the board tem- 
perature T,, which is assumed uniform. The total rate 
of heat transfer removed from the package is 

y; = ti’c,(T,- To). (30) 

Important to note is that in this limit the rate of heat 
removal is independent of both the individual channel 
spacing (D) and board thickness (t). 

(b) When D/L is large enough so that each board 
is sandwiched between distinct boundary layers, the 
heat transfer rate from one surface is described by the 
q’, expression listed in equation (6). The free stream 
velocity U, is dictated by the fixed flowrate and the 
package geometry, U,, = ti’/pnD, or 

(31) 

The total heat transfer rate removed from the package 
is q; = 2nq’,, or, after using the q’, expression and 
equation (31) 

q; = 1.328k(T,- T,)Pr lii[p;;$]“‘. (32) 

The important feature of the large-D asymptote, 
equation (32), is that the total heat transfer rate 
removed from the package decreases roughly as l/D 
as D increases. Combined with the behavior of q’ in 
the opposite limit, equation (30), this means that the 
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maximum heat transfer rate is reached on the plateau 
represented by equation (30), provided the spacing D 
is small enough. The critical board-to-board spacing 
D,, which distinguishes q: (or D << D,) from q6 (or 
D >> DC) is obtained by intersecting the q’(D) curves 
(30) and (32) 

(33) 

Equation (33) shows that when the flowrate Ij2’ 
increases and the r/D ratio is of the order of 1 or 
smaller, the critical spacing DC decreases approxi- 
mately as (ti’)-“‘. Worth noting is that the dimen- 
sionless group ti’L/pH is of the same order of mag 
nitude as the Reynolds number based on length, UL/v, 
where U is the mean velocity in the D channel. 

The maximum rate of heat removal is achieved as 
soon as the order of D becomes smaller than the order 
of 0, : then, the maximum q’ approaches the q: value 
calculated based on equation (30). Said another way, 
no additional benefit is derived from decreasing D 
further (i.e. adding more boards in the H-thick space), 
if D is already smaller than DC. 

These conclusions can be tested by using the 
numerical solutions described in Section 3 and Fig. 2. 
The total heat transfer rate removed from the H x L 
stack is q’ = nq”L. The overall thermal conductance 

q’l( i’-,,, - T,) can be nondimensionalized by using 
the qkax scale recognized in equation (30) 

Bz = . ” 
@fCidTnm - T, ). 

(34) 

The reiationship between B2 and the nondimensional 
parameters of the numerical solution is 

Bz= [(~+$4t%_Pr-J’ (35) 

where M is the nondimensional mass flowrate recom- 
mended by the right-hand side of equation (33) 

.I 

&f=mL 
PH’ 

In terms of M, equation (33) states that DC/L is of 
the order of Pr-‘!‘Mm ‘I’, which is why the group 
(DlL)~~2’3~‘12 is used now on the abscissae of Figs. 
4(a) and (b). The two graphs were drawn for M = 127 
and 63, which in the reference air case of Table 1 
correspond to Re = 1000 and, respectively, Re = 500. 

The numerical results confirm the validity of equa- 
tion (33), because the transition between the high 
conductance limit of equation (30) and the decaying 
conductance of equation (32) is marked by an abscissa 
group of order 1. In conclusion, the stack operates in 
the high thermal conductance regime if, in an order 
of magnitude sense 

D 
(37) 

B2 

1 
M=63 

1 
M=127 

I32 

(b) 
d 

0.1 1 10 

1 

FIG. 4. The maximization of the overall thermal conductance 
when the mass flow rate is prescribed (Pr = 0.7). 

When the abscissa group (D/L) Pr2i3 ML/* becomes 
of order 0.1 or less, the overall conductance B, 
approaches its highest (plateau) value, which is 
approximately 0.76. In other words, equation (34) 
becomes q’ z 0.76rit’c,( YPm,, - T,). This limiting 
value is somewhat lower than in the theoretical limit, 
equation (30), because in the theory the board surface 
was modelled as isothermal. In the numerical exper- 
iments of Figs. 4(a) and (b) the heat flux was assumed 
uniform, and T,,, is the temperature at the trailing 
edge of the board. 

6. OPTIMAL GEOMETRY OF PACKAGES 

WITH FIXED PUMPING POWER 

Neither the constant-AP model nor the constant- 
rir’ model is appropriate when an H-thick package is 
the only item that is cooled by the stream created 
by the fan or pump. The lone package controls the 
resistance to the flow of the coolant, and both AP 
and ti vary as the package geometry changes. What 
remains constant in this case is the electric power input 
to the fan or pump, or the pumping power 

P = $tiAP. (38) 

(a) In the limit D/L -+ 0 the flow through each D 



3684 S. MEKEU et al. 

channel is of the Poiseuille type, equation (2). If we 
combine equation (38) with the mass conservation 
statement riz’ = pUr& and equations (I ) and (Z), we 
obtain the mean velocity through each channel 

(39) 

This can be substituted into equation (30), in which 
rli’ = pUnD, to obtain 

d = ~c#(Tw-- T,) 
pff Ii2 

mTtlD) 1 (40) 

In conclusion, when the board-to-board spacing is 
su~ciently small, the total heat transfer rate decreases 
almost proportionally with D. 

(b) When the channel spacing is large enough so 
that the boundary layers are distinct the velocity in 
the channel is given by equation (5), or, after using 
equation (38) and ti’ = pU,nD 

The total heat transfer rate is q; = 2nq’,, which can be 
developed further by using equations (I), (6) and (41) 

(42) 

In the boundary layer limit, the total heat transfer 
rate decreases almost as iY4” as the board-to-board 
spacing increases. The maximum 4’ corresponds to an 
optimal D value of the same order as the one obtained 
by intersecting the asymptotes (40) and (42) 

We learn in this way that the optimal board-to-board 
spacing is almost insensitive to changes in the specified 
pumping power P and board thickness t. Wow large 

a Dopt value is recommended by equation (43) can be 
seen after noting that equation (41) can be rewritten 
as 

In this equation, the numerical factor of order 1 has 
been neglected. The boundary layer regime scaling 
law (44) applies in an order of magnitude sense even 
at the qi - qb intersection, which is represented by 
equation (43). Therefore if we eliminate the P group 
between equations (43) and (44), we find that 

D OPl U,L -“‘2 _- _~ 
L ( ) py-4:9. 

1’ 
(45) 

If Pr - 1 and the flow is laminar approaching tran- 
sition, U,L]v - lo', equation (45) shows that Dopt 

must be of the order of one-hundredth of the board 
length. The optimal spacing increases as the Reynolds 
number iJ, L/v decreases. 

The scale of the maximum total heat transfer rate 
that corresponds to the optimal spacing D,,,, is 
obtained by substituting equation (43) into either 
equation (40) or equation (42) 

(46) 

The number (0 is the nondimensional pumping power 
defined as 

(47) 

which means that according to equation (43) the opti- 
mal D/L ratio is of the order of Pr- ‘“‘27[1D(1 + t/ 
Do,)]- I!‘. This observation is the basis for choosing 
the abscissa parameter used in Fig. 5. In conclusion, 
the maximum heat transfer rate is proportional to the 
pumping power raised to the power l/3. 

The numerical solutions described in Section 3 and 
Fig. 2 can be used to test the validity of the optim- 
ization results developed in this section. The overall 
thermal conductance of a package with only one side 
of the board heated is q’/( T,,, - T,), where q’ = nq”L. 
The nondimensional conductance is defined by using 
the scale derived in equation (46) 

The relationship between B, and the dimensionless 
parameters of the numerical solution (D/L, @, t/L, 
Pr) is provided by 

The numerical results of Figs. 5(a)-(c) confirm the 
validity of the optimal spacing prediction made in 
equation (43). This conclusion can be summarized by 
using the group shown on the abscissa 

D 
F 1++ ( > 

I:6 

pr10:27@l:h g 2.1 (50) 
Opt 

which reproduces equation (43) almost exactly. Three 
CD values were used in the numerical simulations: 
1.35 x 104, 3.2 x IO4 and 5.9 x IO“. These correspond 
to the Re values of 500, 750 and 1000 in the reference 
case mentioned in Table 1, in which the coolant is air. 
The 2.1 constant that emerges on the right-hand side 
of equation (50) appears to be insensitive to changes 
in CD and t/L. 

The peak values of the thermal conductance curves 
can be correlated by noting that equation (446) can be 
rewritten as 
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9 = 1.35 x 104 

0 = 3.2 x 101 

Cb) 0 1 
0 5 10 
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0=5.9x104 

B3 

0 5 10 

FIG. 5. The maximization of the overall thermal conductance 
when the pumping power is prescribed (Pr = 0.7). 

B 3,peak G 

0.65 
116 

(51) 

in which CX = 2.1 is the empirical constant identified 
in equation (50). The B3,pcak data are correlated within 
10% by the simpler expression 

B 
0.21 

Speak = 

1 + & +O/27@i~6 
(52) 

This expression is simpler than equation (51) because 
the group (1 + t/D& ‘I6 is approximately equal to 1 

in all the numerical cases that are being correlated. 
Note finally that equation (52) confirms also the direc- 
tion of the inequality sign in equation (5 1). 

7. CONCLUSIONS 

In this paper, we have developed a series of theor- 

etical results for estimating the optimal spacing of 
heat generating boards in a stack cooled by single- 
phase laminar forced convection. These results were 
validated by numerical simulations of the complete 
flow and heat transfer phenomenon. Three different 
design problems were considered, according to how 

the stack is mounted in the greater flow circuitry of 
the electrical apparatus. The main conclusions of this 

study are : 

(a) Fixed pressure drop. The optimal board-to- 

board spacing is independent of the board thickness, 
and is given by the nondimensional correlation of 
equation (27). The maximum overall thermal con- 

ductance that corresponds to D = Dopt is summarized 
in nondimensional form in equation (29). 

(b) Fixed mussJlowrate. The overall thermal con- 

ductance of the stack reaches the highest level indi- 
cated by equation (30) when the board-to-board spac- 
ing D is less than the critical spacing D, indicated 
by equation (33). The same conclusion is stated in 
nondimensional terms by equation (37). 

(c) Fixed pumping power. The optimal board-to- 

board spacing is given by equation (50), and the cor- 
responding peak value of the overall thermal con- 
ductance of the stack is correlated by equation (52). 
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